
Accelerating the HPC I/O for Low Latency and
High Throughput with 16-nanometer FPGA-based

Hardware Accelerators
Babar Khan

Computer Science, TU Darmstadt, Germany

Abstract—The I/O stack in data center struggles with the
growing demands of diverse workloads. Our novel hardware/-
software framework, named DeLiBA, aims to bridge this gap by
leveraging a FPGA framework to quickly deploy the FPGA-based
I/O accelerators. While the current version of DeLiBA is focused
on Linux block I/O layer of the data center, its architecture is
equally applicable to HPC I/O stack. Our initial results achieve a
10% increase in throughput and demonstrates an overall speedup
of 2.3x times compared to conventional methods.

Index Terms—HPC, I/O, storage, network, Linux, FPGA

I. INTRODUCTION

The Linux block layer is a kernel subsystem that is re-
sponsible for handling block devices, e.g., hard disk drives
(HDDs), solid state disks (SSDs), and remote storage (SAN).
This layered architecture adds a significant overhead along the
entire request path. Measurements have shown that it takes
between 18,000 and 20,000 instructions to send and receive
a single fundamental 4 kB I/O request [1]. In x86 systems,
around 50% of the total execution time of a single 4 kB I/O
request is spent in submitting and completing I/O requests at
the kernel stage [2]. While considering 32-bit ARM Cortex A9
processors, it is important to note that the overhead of a 4 kB
I/O accounts for 90% of the total execution time, with storage
device latency contributing only 10% [3]. Similarly, positioned
between the applications and the underlying storage hardware,
the HPC I/O stack also yields huge performance bottleneck
due to its multi-layered complex I/O architecture. Our open-
source hardware/software framework, Development of Linux
Block I/O Accelerators (DeLiBA), introduced here, is a pro-
posal to alleviate the complexity in the multi-layered Linux
block I/O layer. It lifts key functionality of the kernel-level
libraries of Linux I/O stack up into user-space, enabling the
use of a wide spectrum of programming tools and techniques
equally applicable to kernel-level libraries of HPC I/O stack
[4]. As a first use-case for DeLiBA, we have implemented a
proof-of-concept of an I/O accelerator for the client side of
an open-source software-defined distributed storage protocol
called Ceph. With an increasingly diverse HPC I/O workload,
Ceph is a good choice for HPC as it provides all three major
storage interfaces, i.e., object, block and file. [7], [8].

II. METHODOLOGY TO ACCELERATE I/O

The focus of Figure 1 is an initial overview of DeLiBA.
In the example shown, a client application generates a read

operation 1 , which would pass through filesystem layers,
and end up at the driver responsible for the device the
data is stored on. For our purposes, that physical storage
is represented by the nbd driver [5], [6], which redirects
the I/O requests back up into user-space 2 using a netlink
interface. NBD is a Linux based block device protocol that
allows to export a block device to a client application. As
mentioned in Section I, DeLiBA uses Ceph as a use-case.
Therefore, Ceph then provides a number of software support
functions (librados,librbd) to perform the initial steps of
I/O processing 3 , similar to the approach that would be
used in kernel-level. After passing through these Block Layer
Libraries, requests would continue to be processed in software.
However, with DeLiBA, we open up an alternative, namely the
choice to route the requests toward an Field Programmable
Gate Arrays (FPGA) accelerator 4 for further processing.
FPGAs are now standard in HPC and cloud datacenters,
providing more flexibility at lower power than ASICs or GPUs.
And unlike CPUs, which execute instructions sequentially
or in SIMD pattern, FPGAs can effectively perform specific
I/O tasks in parallel. To this end, the nature of block I/O
operations fits well to the task-based computational model in
DeLiBA, where each I/O request can be mapped to a task to
be executed on the FPGA accelerator. As Ceph is a distributed
filesystem, we have to communicate over the network 5 after
completing client-side processing. Currently, for both software
and hardware-based I/O processing, we rely on Linux kernel
network stack for this operation, which in turn interacts with
actual NIC to communicate with the remote Ceph storage 6 .

III. HARDWARE IMPLEMENTATION AND EVALUATION

DeLiBA is used to integrate a Xilinx Alveo U280 FPGA
card providing accelerators for performing key computations
of the Ceph protocol stack into the block I/O stack. The client
side host uses an AMD EPYC Rome 7302P 16-core CPU
with 128GB of memory, attached by 10Gb/s Ethernet to
the Ceph server. The FPGA card is attached to the client
host by PCIe Gen3 x8 and uses a system clock of 200MHz.
A key aspect is the communication overhead required for
interacting with the host. These switches between software-
hardware-software execution from the DeLiBA I/O pool, to the
Ceph kernels on the FPGA, and back to the host-side network
stack, carry significant overhead. Using the software-side C++
timing library chrono library, we measured a full roundtrip, of

Network Block Device (NBD)

Client Application
read () write ()

Cache &
Schedule

Client
Kernel Memory Map

FPGA Driver

8x PCIe Gen3
interface

Read Pointer

HW-SW

Write Pointer
BRAM

HLS accelerated launcher

PE PE PE

PE PE PE

interrupt controller

FIFO request queue
with 512 bit for each

element

Data Center FPGA
(Alveo U280)

Linux kernel
Network stack

10G
Network Interface

Card (NIC)

/dev/nbdx

I/O PoolUser-level NBD
Server

socket nbd requestsocket nbd reply

Block devices in storage cluster
3x replication

task based
interface

Client
Hardware

Client
Userspace

Block Layer Libraries Leveraging librbd
and librados

Network library
(Cluster Messenger)

Key operations
on FPGA:

determining the physical
storage (OSDs, drives)

1

2

3

4

5

6

Fig. 1: Design and implementation of our framework DeLiBA to accelerate HPC I/O

SW HW SW HW SW HW SW HW
0

200

400

600

T
hr

ou
gh

pu
t

(M
B

/s
ec

)

Seq-read Seq-write Rand-read Rand-write

0

200

400

600

4K 128K

Fig. 2: Block I/O Throughput Hardware-Accelerated vs Software Baseline

around 60µs and 70µs. Even with these additional overheads
due to the additional PCIe round-trips involved to the FPGA,
the latency of using the hardware accelerator is similar or
even better than using the pure software stack, as shown in
Table I. In this manner, the proof-of-concept Ceph accelerator
we use to demonstrate DeLiBA in all but one case manages
to exceed the baseline performance of the pure software
implementation. As shown in Figure 2, similar gains also
apply to the throughput measurements for 4 kB and 128 kB
block sizes, and sequential and random access patterns. The
hardware-accelerated solution manages to speed-up throughput
by up to 1.9x for sequential writes of 4 kB blocks, and by 1.2x
for random writes of 128 kB blocks. The gains are even more
pronounced for the rate of I/Os per second. Here, the largest
gain of 2.36x for 4 kB blocks is achieved for random reads.
For the larger 128 kB blocks, the I/O rate will naturally be
slower. But still, the hardware accelerated stack manages a
gain of 1.13x for the random-read case.

TABLE I
I/O REQUEST LATENCY ON SOFTWARE AND HARDWARE

SW vs HW Latency [µs]
(4 kB) seq-read seq-write rand-read rand-write

SW 65 95 130 98
HW 60 82 93 96

IV. CONCLUSION AND FUTURE WORK

While DeLiBA can already enable some performance gains
over the standard I/O stack, further improvements are already
being worked on. Specifically, implementing the host-side
network stack also on the FPGA.

REFERENCES

[1] Caulfield, Adrian M. and De, Arup and Coburn, Joel and Mollow,
Todor I. and Gupta, Rajesh K. and Swanson, Steven “Moneta: A High-
Performance Storage Array Architecture for Next-Generation, Non-
volatile Memories,” IEEE, 385-395, 2010.

[2] Hyeong-Jun Kim and Young-Sik Lee and Jin-Soo Kim: A User-space
I/O Framework for Application-specific Optimization on NVMe SSDs,
USENIX Association, 2016 pp.41-45.

[3] Stratikopoulos, Athanasios and Kotselidis, Christos and Goodacre, John
and Luján, Mikel, “FastPath: Towards Wire-Speed NVMe SSDs,” 2018
28th International Conference on Field Programmable Logic and Appli-
cations (FPL), 2018, pp. 170-1707.

[4] Jean Luca Bez, Suren Byna, and Shadi Ibrahim. 2023. I/O Ac-
cess Patterns in HPC Applications: A 360-Degree Survey. ACM
Comput. Surv. 56, 2, Article 46 (February 2024), 41 pages.
https://doi.org/10.1145/3611007

[5] https://github.com/NetworkBlockDevice, “NBD Github,”
[6] Wang, Li and Wen, Yunchuan, “Design and Implementation of Ceph

Block Device in Userspace for Container Scenarios,” IEEE, 383-386,
2016

[7] K. Jeong, C. Duffy, J. -S. Kim and J. Lee, ”Optimizing the Ceph
Distributed File System for High Performance Computing,” 2019
27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), Pavia, Italy, 2019, pp. 446-451, doi:
10.1109/EMPDP.2019.8671563.

[8] Alberto Chiusole, Stefano Cozzini, Daniel van der Ster, Massimo
Lamanna, and Graziano Giuliani. 2019. An I/O Analysis of HPC Work-
loads on CephFS and Lustre. ISC High Performance 2019 International
Workshops, Frankfurt, Germany, June 16-20, 2019

	Introduction
	Methodology to Accelerate I/O
	Hardware Implementation and Evaluation
	Conclusion and Future Work
	References

