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With the trend towards ever larger łbig dataž applications, many of the gains achievable by using specialized compute

accelerators become diminished due to the growing I/O overheads. While there have been several research eforts into

computational storage and FPGA implementations of the NVMe interface, to our knowledge there have been only very limited

eforts to move larger parts of the Linux block I/O stack into FPGA-based hardware accelerators. Our hardware/software

framework DeLiBA initially addressed this deiciency by allowing high-productivity development of software components of

the I/O stack in user instead of kernel space and leverages a proven FPGA SoC framework to quickly compose and deploy the

actual FPGA-based I/O accelerators. In its initial form, it achieves 10% higher throughput and up to 2.3× the I/Os per second

(IOPS) for a proof-of-concept Ceph accelerator running in a real multi-node Ceph cluster. In DeLiBA2, we have extended the

framework further to better support distributed storage systems, speciically by directly integrating the block I/O accelerators

with a hardware-accelerated network stack, as well as by accelerating more storage functions. With these improvements,

performance grows signiicantly: The cluster-level speed-ups now reach up to 2.8× for both throughput and IOPS relative

to Ceph in software in synthetic benchmarks, and achieve end-to-end wall clock speed-ups of 20% for the real workload of

building a large software package.

CCS Concepts: · Distributed Storage → Reconigurable logic and FPGAs; · Storage → Block I/O.

Additional Key Words and Phrases: High-Level Synthesis, FPGA architecture, FPGA acceleration, Linux, Application and

Architecture, Programming Tools, Open-Source

1 INTRODUCTION

With the trend towards ever larger łbig dataž applications, many of the gains achievable by using specialized
compute accelerators become diminished due to the growing I/O overheads. Often, the required storage capacities
can only be realized by distributed storage clusters, disaggregated from the compute clusters. Such systems
include traditional SANs [77] for block storage, but also highly scalable parallel ile systems such as HDFS [63],
GPFS [31], PVFS [12] and PanFS [51]. Some storage systems, such as the Ceph [1, 15, 67] solution examined later
in this work, combine diferent storage approaches, such as ile storage, block storage, and object storage in a
single system. But as the protocols for interacting with these systems become ever more complex as well, e.g., to
address fault tolerance and highly parallel operations, many opportunities to employ hardware acceleration in
the storage I/O stack become apparent. This follows a development similar to the increased use of acceleration
(oload) functions for high-speed networking.
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However, only limited prior work has been performed in this area (see Section 7 for a discussion). And new
eforts are hampered both by the complexity of the existing solutions, e.g., the Linux block storage stack with
its more than 64K lines of code, as well as the challenging development environment: Many storage stacks are
implemented in the operating system kernel, which imposes a number of limitations on the usual development,
proiling and debugging techniques that can be employed when adding hardware accelerators to an application,
as many software development tools do not (fully) work in kernel space.
The DeLiBA framework introduced here is a proposal to alleviate these diiculties for easier research. It lifts

key functionality of the modern, multi-queue-based part of the Linux block I/O stack into user-space, enabling
the use of a wide spectrum of programming tools and techniques. On the FPGA side, it seamlessly interfaces
with a powerful SoC design and integration framework that encapsulates and automatically generates many of
the low-level aspects of FPGA accelerators (e.g., PCIe interfacing, DMA, interrupt-based completion signaling,
parameter passing etc.), and makes them accessible from abstract APIs. By tackling the I/O acceleration problem
from both ends, signiicant gains in development productivity can be achieved. The irst use of the framework in
DeLiBA1 [37] allowed the hardware-acceleration of compute-intensive storage algorithms, the reined version
DeLiBA2 presented adds hardware-acceleration for the network communication operations.

The remainder of this paper is organized as follows. In Section 2, we give an introduction to the existing Linux
block layer for distributed storage and point out some of the performance bottlenecks. Section 3 describes the
software architecture of our DeLiBA2 framework, while Section 4 introduces the hardware interface. As an initial
use-case for DeLiBA2, we have implemented a proof-of-concept of an I/O accelerator for the client side of the
Ceph storage protocol. Thus, Section 4 discusses some key Ceph operations and their corresponding hardware
design. Since we are addressing the bottleneck in the I/O stack of distributed storage, Section 4 discusses the
integration of hardware accelerated storage functions with a hardware TCP/IP stack, which is one of the key
contributions of this work. Section 6 presents the results of an initial performance evaluation of the accelerators
and network interface. We close with a discussion of related work in Section 7 and conclude in Section 8, also
looking forward to future work.

2 THE LINUX BLOCK I/O LAYER AND ITS LIMITATIONS

In order to motivate our design choices for the DeLiBA2 framework, we give a brief overview of the Linux block
I/O subsystem, speciically when used in a distributed storage environment.
The Linux block layer is a kernel subsystem that is responsible for handling block devices, e.g., hard disk

drives (HDDs), solid-state disks (SSDs), and remote storage (SAN) [2]. Applications submit I/O operations
(hereafter: I/Os) via kernel system calls (sysread()/syswrite()), which are described in a data structure called
a block I/O (bio). Each bio contains information such as address, size, modality (read() or write()), or type
(synchronous/asynchronous). Over the years, the block layer has undergone a major change to move from a
single request queue to a multi-queue model [5], as shown in Figure 1. Explicit multi-queuing support was added
with Linux 3.13 and since Linux 5.0, the old single-queue implementation has been removed. In order to add
support for the block multi-queue to a storage protocol like SCSI, the scsi multi-queue (scsi-mq) work was also
merged in the 3.17 kernel [11].

As Figure 1 shows, in its present form, the Linux block layer provides per-core request queues called software

queues. These software queues are conigured based on the number of CPU cores in the system, to reduce the lock
contention with a single request queue. Below the software queues, per-device hardware queues provide a second
level of bufering: bio requests scheduled for dispatch are not sent directly to the device driver, they are instead
sent to the corresponding hardware dispatch queue. The number of hardware queues will typically match the
number of hardware contexts supported by the device driver. Device drivers may choose to support anywhere
from one to 2,048 queues, as supported by the message-signaled interrupts (MSI-X) standard. In contrast to the
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legacy I/O stack, the new block layer has higher lexibility to optimize access to the underlying PCI Express
(PCIe) interface used to communicate with actual hardware.

This queuing scheme applies not just to modern storage devices used locally (e.g., SSDs), but also to the modern
network interfaces (NICs) used to access remote distributed storage. as these also can send or receive packets in
multiple hardware queues. These NIC-based multiple queues were introduced to improve virtualization in Linux
network stack, but they also proved useful for load balancing and dispatching in multi-core systems [3].
However, a consensus is growing in the storage community that even with these improvements, the block

layer has not kept up with novel storage hardware [4, 42]. We will analyze some of the deiciencies and make a
case for FPGA acceleration of selected parts of the stack.
Many of current Linux core operations are slower than they were some years ago, e.g., due to the need to

cope with ever more complex systems architectures [56]. This has impacted the Linux storage stack as well,
e.g., with regard to latency: As Figure 1 shows, a deeply layered kernel hierarchy is used to translate from I/O
requests to the actual storage operations. This layered architecture adds a signiicant overhead along the entire
request path. Measurements have shown that it takes between 18,000 and 20,000 instructions to send and receive
a single fundamental 4 kB I/O request [13]. In x86 systems, around 50% of the total execution time of a single
4 kB I/O request is spent in submitting and completing I/O requests at the kernel stage [38]. Whereas for 32-bit
ARM Cortex A9 processors, the overhead of a 4 kB I/O reaches 90% of the total execution time, with storage
device latency only adding 10% [68]. As a further complication, the block I/O scheduler(s) [45, 46, 71] are also
sometimes at odds with the CPU scheduler(s) [70]. This leads to I/O bound processes not receiving suicient
CPU time to actually execute at their desired priority [39], sometimes leading to workarounds where the non-I/O
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limited parts of a workload are artiicially slowed down by sleep() system calls to łbump upž the throughput of
I/O intensive processes. However, this gain is only achieved at the cost of increased latency.
Balancing I/O latency and throughput is a long-standing problem. A recent study shows that conventional

approaches do not achieve both goals simultaneously [30], and suggests to re-architect the existing storage stack
again. As an alternative to these software-centric eforts, we propose to examine the use of hardware acceleration
at higher levels of the stack. However, research in this area is hindered by the lack of high-level frameworks and
the somewhat łhostilež nature of the kernel-space programming environment, in which many programming,
debugging, and proiling techniques work only with restrictions, or not at all. Conventional storage software
stacks are unable to meet the needs of high-performance storage. In terms of I/O request rates (IOPS), storage
devices are an order of magnitude slower than network devices. For example, the fastest SSD devices operate at
around 1M IOPS (I/O operations per second) per device, whereas a state-of-the-art NIC is capable of handling more
than 70M packets per second. This slower storage I/O rate means that several legacy OS improvement eforts for
storage handling are still considered worthwhile, even on modern hardware. Furthermore, in distributed storage
the bottleneck is further aggravated by the underlying Linux network stack [9, 10], where even state-of-the-art
designs spend 70% to 80% of CPU cycles in just handling TCP connections [35].

3 FRAMEWORK ARCHITECTURE

To enable easier experimentation with hardware-accelerated block I/O stacks, our framework moves the software-
side processing up from the kernel-space back into user-space. To this end, we rely on the Network Block Device
(NBD) to bidirectionally transfer requests between user and kernel space. NBD is a Linux based block device
protocol that allows to export a block device to a client application. It has been a part of the standard Linux kernel
since version 2.1.67 [6, 23, 74]. Note that the use of NBD does carry a performance penalty, as the additional
user-kernel space switches take time. However, as our initial focus for DeLiBA is to enable research into this area,
we are willing to accept the overhead. Also, we will show later, that even with these overheads, performance
gains can actually be achieved using FPGA acceleration. With the update to DeLiBA2 described later in this text,
we improve the speed-ups even further, but still retain the lexibility in the front-end of the block I/O pipeline
achieved by enabling easier development in user-space. Figure 2 sketches the main architecture of the improved
framework DeLiBA2, which integrates storage accelerators with a hardware network stack. This integration
reduces the latency compared to the original DeLiBA [37] as it avoids both user/kernel context switches, as well

ACM Trans. Reconig. Technol. Syst.



The Open-Source DeLiBA2 Hardware/Sotware Framework for Distributed Storage Accelerators • 5

as hardware/software execution-mode switches, e.g., from software to NIC, in the tail-end of the distributed block
I/O storage pipeline.

In the example shown in Figure 2, a client application issues a read operation 1 , which passes through various
ilesystem layers (not shown here), and ends up at the driver responsible for the device the data is stored on. For
our purposes, that physical storage is provided by the nbd driver, which redirects the I/O requests back up into
user-space 2 using a netlink interface.
With the I/O processing now being handled in user-space, we have to provide similar functionality to what

would be available in the kernel, which is unavailable to user-space code. Fortunately, most of what is required
comes with Ceph, which provides several software support libraries (librados, librbd) to assist the I/O pro-
cessing 3 , similar to what would be used at kernel-level. By reusing the original Ceph implementations in
our user-space framework, we can avoid having to develop the algorithms from scratch, and always remain
compatible with the original code.
With the DeLiBA framework, any step(s) of the user-space I/O processing pipeline could be oloaded to

accelerated hardware 4 (see Section 4). In the original DeLiBA, the network communication taking place after
the local I/O processing steps (both software and hardware-accelerated) had completed was also initiated from
user-space software. This incurred one switch back from hardware to software execution (returning from the
storage hardware accelerators), one user-kernel context switch (from the network operation to the kernel network
stack), and one more switch from kernel software execution to the NIC hardware. In the updated DeLiBA2
described here, these last three switches are eliminated, since the storage hardware accelerators now directly
interact with a hardware network stack.

The hardware network stack, in turn, interacts with the physical network to communicate with the distributed
storage (here: Ceph) server 5 .

3.1 Cache and Scheduler

In our scenarios, the nbd driver just redirects the I/O requests back into user-space. It does not participate in any
of the kernel’s support mechanisms to manage and optimize I/O operations. But we can achieve the required
functionality by providing similar mechanisms in user-space. As describe above, to realize the DeLiBA Block
Layer Libraries, we do not have to start from scratch but can leverage parts of the functionality provided by
Ceph’s librbd and librados libraries to realize these interfaces. We employ these to realize two key functions.
First, as our user-space approach cannot beneit from the kernel’s page cache, we employ the librbd library

to realize our own caching facility. We employ the Least Recently Used (LRU) replacement strategy and use the
default cache size of 32MiB, which is the same size used by the in-kernel Ceph rados-block device (RBD) driver.

In addition to caching, we also employ the facility as a irst step towards coalescing multiple I/O requests for
improved throughput. The next step of request coalescing takes place in a custom I/O scheduler we created. We use
a self-tuning algorithm to delay I/O requests by up to half the currently observed average I/O latency. Requests
arriving in that time window will be coalesced together for further processing. The self-tuning algorithm uses
boost::accumulators as its core data structure, which are controlled by the ROLLING_WINDOW parameters.
Currently, these are conigured for rolling_count and rolling_sum operations, yielding the current delay of
up to half. In a later step, care will be taken to transfer all the coalesced requests in a single PCIe burst transfer to
the FPGA for handling.
However, when moving on to DeLiBA2, this approach has two disadvantages: First, the additional execution

mode switches from FPGA hardware back to software had a non-negligible overhead (e.g., due to interrupt-based
signaling and result/status transfers using programmed I/O), especially for high packet rates. Also the use of the
Linux network stack necessitated yet another user-kernel context switch, as well as another software-hardware
execution mode switch when using the actual NIC.
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Second, the software I/O pool is realized using worker threads [48ś50], which in turn are executed as processor
hardware threads managed using the POSIX pthreads API. This is a heavy-weight interface, e.g., in terms of
required context switch overhead, but also due to the frequent inter-thread synchronisation required by the I/O
pool to coordinate access to shared data structures. Together, these issues carry a relatively high overhead, as
discussed in [48ś50].

3.2 User-Space Network Library

Figure 3 shows the integration of user-space network library with the FPGA-based TCP/IP stack. Following
caching and scheduling, the operations are ready to be issued in the form of the three I/O primitives read,
write, and flush. Both read and write are asynchronous operations, while flush operates synchronously
on the request cache. To support the asynchronous operations, DeLiBA had to extend each of the current I/O
primitives with a completion, indicating a callback function to be executed when the I/O operation has actually
been completed and to carry status information. E.g., for a read, the return value of the completion is the number
of bytes read on success, for a write, the return value of the completion will be 0 on success. Negative error
codes can be used to express the reasons for a failed request.
At this stage, all of the basic housekeeping has been performed and the requests have been set up properly

(after caching and coalescing) for more advanced processing. E.g., for Ceph, a key operation is determining the
physical storage (OSDs, drives) in the distributed storage cluster where the data indicated in the I/O requests is
actually located. Contributing more than 50-60% to the overall workload, these are computationally expensive
operations, and thus an interesting candidate for hardware acceleration.
To allow the hardware-accelerated execution of storage operations, an I/O Pool is used in DeLiBA that is

responsible for aforementioned advanced processing. As shown in Figure 3, this pool is responsible for launching
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the actual hardware tasks corresponding to the I/O operations, as well as tracking their completion status,
and performing the completion routines when an operation has inished. The I/O Pool is used to perform four
operations: request/reply bufer memory management on the FPGA, setting-up the network communications,
preparing the block I/O request (and handling a reply), and launching of the actual hardware tasks.

The host-side I/O requests, coming in either from the host (software) or from FPGA-accelerated processing, are
packaged into a Ceph-speciic network protocol called Messenger to communicate with the remote Ceph storage
cluster. Such a message contains a header (source and destination addresses / ports, message type, Ceph session
numbers etc.), a footer (mainly holding CRC values), a so-called front-message body and possibly a data payload.
During the replication phase, the key contents of the front-message body will be the parameters related to the
required replication accelerator on the FPGA. Similarly, during the erasure-coding phase, the front-message
body will contain parameters related to parity chunks and data chunks. Note that the Messenger layer has no
knowledge of the actual distributed storage algorithms or the lower-level TCP communication formats of the
various involved service daemons. For DeLiBA, the actual network communications were performed in software
on the Linux kernel networking stack and NIC as usual.

However, when moving from the initial DeLiBA1 on to DeLiBA2, this approach has two disadvantages: First,
the additional execution mode switches from FPGA hardware back to software had a non-negligible overhead
(e.g., due to interrupt-based signaling and result/status transfers using programmed I/O), especially for high
packet rates. Also, the use of the Linux network stack necessitated yet another user-kernel context switch, as well
as another software-hardware execution mode switch when using the actual NIC. Second, as described above in
Section 3.1, the software I/O pool with its use of heavy-weight processor threads, also becomes a bottleneck.
DeLiBA2 addresses both of these issues. First, the network operations are now also performed in the FPGA,

avoiding the communications-induced switching overhead. Second, the multi-threaded I/O pool has been replaced
by a much lighter-weight single-threaded task-based interaction with the FPGA, which uses a simple FIFO to
just pass the requests on and performs the request handling now completely in hardware, avoiding all of the
software based synchronization overheads. On the software side, the previously observed heavy lock contention
was avoided by the excision of the inter-thread shared data structures.

As will be shown in Section 6, this approach yields the largest gains for high-request rate scenarios, e.g., when
operating on small storage block sizes.

Communication of these operations with the hardware accelerators on the target FPGA, a Xilinx Alveo U280
card, occurs via memory-mapped I/O (control/status data) and DMA (bulk data) via a PCIe Gen3x8 interface.
The details of these low-level operations are abstracted using the TaPaSCo hardware/software framework [27],
which ofers a task-oriented view of the accelerators that its very well with the request-based nature of the I/O
operations.

3.3 Performance of DeLiBA in Sotware-Only Mode

As a baseline, we begin our performance measurements by examining the original DeLiBA architecture in
software-only mode. Thus, we employ the NBD-based redirection to user-space, but do not use any hardware
acceleration.
Our testbed consists of a single client with 6 cores and a cluster with 8 drives. All nodes on the cluster run

Linux kernel version 5.2 on CentOS. The client node runs on Ubuntu 18.04. The underlying hardware uses an
AMD EPYC Rome 7302P 16-core CPU with 128GB of memory. In order to verify the network speed among the
nodes, we have used the iperf network testing tool. For our 10GbE network, the bandwidth performance range
we achieved is 9.2Gb/s. We use the notation seq and rand here to identify the sequential and random-access
workloads, respectively.
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We show results for both a synthetic as well as a real workload. The synthetic workload is generated by the
Flexible I/O (io) tool [21] traditionally used for storage testing. With its ine control, we can easily create the
necessary scenarios for detailed measurements.
The real workload consists of compiling the entire Ceph system using GCC from source stored on a Ceph

block-storage device with a CephFS ilesystem on top, created with default ceph fs volume create parameters.
For this real workload, we do not have ine control over block sizes and will just give aggregate performance
numbers (wall clock execution time) for each of the two test scenarios. The Ceph source code compiled here
consists of a total of 3,956 source iles having a total size of 47 MB and containing ca. 1,55 million lines of code.
The build process itself generates a total of 30 GB of output, which is also stored on the CephFS volume.

Furthermore, we have quantiied the bottlenecks into two forms, i.e. latency inlation and throughput degrada-
tion. Considering the most popular request sizes of many applications are 4 kB, 8 kB, 64 kB, 128 kB and 512 kB, we
show bar charts for these values. For the łotherž block sizes of 16 kB, 32 kB, and 256 kB, we have to present the
measurements in a condensed fashion as numerical tables, since their inclusion in the bar charts would reduce
legibility.
For the Messenger, which executes using the multi-threaded I/O pool in software, we stayed with the default

option of 1:1 core:thread ainity. Since Ceph is a complex system, we have additionally veriied our testbed and
proiling results by using the exact testbed conigurations as created by Ceph’s widely used deployment tool
[14]. The tool generates a synthetic workload to benchmark a real data center cluster and is part of the original
source code [17]. Since Ceph is a distributed storage system, much efort is spent on guarding against data loss,
for which three mutually exclusive methods are employed: One is replication, where the same data is replicated in
a distributed manner across multiple storage nodes, the second is erasure coding, where mathematical techniques
are employed to compensate for the partial loss of data, and the third is data scrubbing [22], which is a server-side
technique that is not relevant to our use-case.

The main challenge for replication is to quickly to determine in a highly scalable manner where a certain piece
of data is physically stored among the (potentially many) storage nodes. Erasure coding encodes the user data
in a manner similar to Forward Error Correction (FEC), but is specialized to handle missing data (e.g., due to
failed storage media or nodes), instead of erroneous/corrupted data, and can reconstruct the original data from
its encoded representation.
At a system level, the storage overhead of replication is proportional to the replication scheme used. For

instance, a 3-replication scheme will carry an overhead of around 300% because each copy of data contributes
100% of storage overhead. In contrast to the storage overhead of replication, erasure coding has a higher compute
and memory cost [59, 75].

3.3.1 Latency. Figure 4b and Figure 5b give the latency for the commonly used block sizes 4 kB to 512 kB, for
replication and erasure coding, respectively. Here, the latency has the three main sources marked in Figure 2: 1

the block I/O request transmission from the client application to stage 2 the nbd kernel client, then stage 3

the user-space library. Finally, at the last stage the block I/O request is placed on the target block device in the
storage cluster. For comparison, when using Ceph natively without nbd, our measurements showed the latency
between 90 �s and 95 �s for 128 kB in case of 128 kB reads. Note that these latency measurements are subject to
the jitter typically occurring in a non-realtime environment such as Linux.

Since the end goal is to use low-latency FPGA accelerated network stack, it was important to explicitly proile
the end-to-end latency of a single block IO request in software-only mode. This implies proiling latency from
stage 1 (client application) till last stage 5 (distributed storage) of Figure 2. To this end we have used a reliable
proiling method, namely the enhanced Berkeley Packet Filter (eBPF) tool. The Linux kernel has supported BPF
since version 2.5. A key reason to use eBPF was its ability to easily inject C user-space code into the kernel part
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Fig. 4. Latency and throughput results for the sotware baseline for replication-based storage with a Network Block Device
(NBD) in-the-loop

of nbd that resides between stage 1 and stage 2 without changing the kernel source code. This allowed the
detailed latency measurements shown here.
The bar chart given in Figure 6 shows the various block I/O request patterns and their impact on overall

latency, as introduced in Figure 2. The graph is divided into four stacked bars, each representing a speciic stage
of the main DeLiBA2 framework architecture in Figure 2. We captured the times for a speciic scenario involving
a single 4 KB block I/O request across four distinct non-direct (bufered) block I/O request patterns: sequential
read, sequential write, random read, and random write.

We begin in stage 1 of Figure 2, which is represented by the stacked bar labeled client in Figure 6. This stage
involves the generation of the block I/O request by the client application, and the subsequent transition from user
mode to kernel mode. Regardless of the speciic pattern, the time taken in this stage remains almost constant for
sequential read/writes and random reads/writes, averaging at around 7% of the overall latency.
Moving forward, stage 2 of Figure 2 represented as stacked bar kernel shows the duration spent within the

nbd kernel library, bridging the gap between stage 1 and stage 2 . It is measure to be the most time-consuming
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Fig. 5. Latency and throughput results for the sotware baseline for erasure coding-based storage with a Network Block
Device (NBD) in-the-loop

part across all access patterns. On average, this stage accounts for 47.25% of the overall latency, indicating its
substantial impact on the end-to-end latency.

The stacked bar user-space represents the time spent in user-space libraries at stage 3 of Figure 2. Across the
diferent patterns, this stage contributes an average of 15.75% to the overall latency. It is worth noting that during
this stage, the most signiicant latency contributors are the cache and scheduler libraries, particularly when
dealing with sequential read or write block I/O requests. This inding suggests that the eiciency of the cache
and scheduler becomes crucial for optimizing the system’s performance during these speciic I/O operations.
For random read or write block I/O requests, the time spent in user-space cache and scheduler is relatively
shorter, which is most likely due to the expected cache misses associated with random access patterns, resulting
in reduced time spent in the user-space cache and scheduler.
Finally, the storage stacked bar represents the time spent at the storage end, occurring between stage 4

and stage 5 , including the network latency. On average, this stage contributes 29.5% to the overall latency. It
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Table 1. Throughputs of sotware baseline forłotherž block sizes

Block Size
Request Patterns

seq-read seq-write rand-read rand-write

16 kB (replication) 68MB/s 55MB/s 62MB/s 48MB/s
32 kB (replication) 155MB/s 102MB/s 140MB/s 78MB/s
256 kB (replication) 660MB/s 455MB/s 515MB/s 360MB/s

16 kB (EC) 85MB/s 60MB/s 78MB/s 50MB/s
32 kB (EC) 175MB/s 106MB/s 152MB/s 92MB/s
256 kB (EC) 680MB/s 502MB/s 590MB/s 450MB/s

encompasses the operations related to the storage system, including data retrieval or storage processes, and plays
a signiicant role in determining the inal latency experienced by the DeLiBA2 framework.

3.3.2 Throughput and IOPS. The Figure 4a and Figure 5a shows the throughput for block sizes 4 kB, 8 kB,
64 kB, 128 kB and 512 kB. For replication mode, the maximum throughput achieved is for 512 kB sequential reads
with 750MB/s, and the maximum IOPS (I/O operations per second) are achieved for 4 kB sequential reads at
9, 000 IOPS. EC has similar latencies, but achieves higher throughputs. Table 1 condenses the measurements for
the łotherž block sizes that would not it into the bar charts.
For comparison, using Ceph natively, without the nbd relay to user-space, achieves roughly 800MB/s in this

setup. Note that the penalty for the NBD kernel-user space redirection we employed in DeLiBA1 thus mostly
afects latency and IOPS, and has only a limited efect on throughput for the larger block sizes, being, e.g., just
≈ 7% slower for 512 kB requests in replication mode, and even reaching non-NBD throughputs for EC mode.

3.3.3 Wallclock Performance on Real Workload. For our real world workload of compiling Ceph itself
on a remote CephFS ilesystem held on our software baseline coniguration (software Ceph block storage with
NBD-in-the-loop), the average wall clock execution across ten full-system compilations time is 132 seconds (min.
128s, max 140s), with the ile system cache being cleared between runs.

3.3.4 Impact of Scaling-Up Core Counts. Given the discussion of overhead sources in Section 3.2, we examine
to what extent we can raise the performance by scaling up the number of CPU cores used to issue more I/O in
parallel requests in a client. To this end, we used a diferent server coniguration that attaches a single fast NVMe
SSD to the Ceph OSD storage daemon, replacing the HDDs used in the other experiments. The SSD with its
many internal queues should easily be able to keep up with the higher request rates that might be enabled by
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Fig. 7. Scaling-up core counts in sotware-only mode with a Network Block Device (NBD)

using more cores on the client to issue them. The actual requests are again generated by io, which this time is
conigured to create a parallel workload using multiple queues across the cores. Speciically, we conigured io to
perform 4 KB sequential reads and 4 KB sequential writes at an iodepth of 64.
The results of increased core counts to generate requests are shown in Figure 7. It is clear that more cores

generating requests do not linearly improve system throughput even when using SSD storage on the server. The
maximum throughput for 4K read stalls at 45 MB/s for the single disk. Likewise, the maximum throughput for 4K
writes tops out at 30 MB/s. Thus, in the software baseline we evaluate here, the Ceph client-side is unable to keep
up with more I/O requests, as it expends too much efort in its own thread pool-based processing architecture.

4 ADDING HARDWARE ACCELERATION TO DELIBA

The nature of block I/O operations its well with the task-based computational model, where each I/O request can
be mapped to a task to be executed on the FPGA accelerator. Thus, it makes sense to apply an existing framework
for task-based FPGA computing to the I/O scenario. Speciically, both the original as well as the new version of
DeLiBA rely on the Task-Parallel System Composer (TaPaSCo) [27] as a middleware to dispatch the I/O requests
to the actual FPGA accelerator for processing and to perform the required high-performance DMA transfers.
To evaluate the improved practicability and performance of DeLiBA, we have used it to construct a block I/O
accelerator for the Ceph distributed ilesystem. The next sections will discuss the key Ceph kernels and their
hardware acceleration.

In addition to speeding-up the storage functions, DeLiBA2 also integrates their accelerators with an an open-
source hardware-accelerated TCP/IP stack [26, 60, 64, 73] to reduce both the number of user/kernel as well
software/hardware execution mode switches.

4.1 Hardware I/O Accelerator for Ceph Clients

The Ceph client with its complete source code was carefully proiled on a bare metal server using tools such as
Intel VTune Proiler [32] and Valgrind [72] to determine compute-intensive processing operations and collect the
run-time call graphs. An important metric in proiling was to measure the contribution of the software kernels to
the overall load.

The original DeLiBA only provided hardware accelerators for the Ceph CRUSH replication scheme [76], while
DeLiBA2 discussed here also supports accelerators for erasure coding. The third option would be scrubbing,
which scans all data and compares it with the other replicas to detect and ix inconsistencies. While it is a very
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Table 2

Software Profiling results, High-Level Synthesis (HLS) Estimates, and HW execution times for Ceph kernels

Kernel SW Overall Vitis HLS Vitis HLS HW SLOCs SLOCs

Execution contribution Cycles Latency Execution SW HLS

Time to runtime (min-max) (min-max) w/ network

Straw Bucket (pure HLS code) 85 �s 70% - 75% 133 - 135 0.665 �s - 0.675 �s 62 �s 256 148
Straw Bucket (using Vitis ln� function IP) 85 �s 70% - 75% 177 - 177 0.885 �s - 0.885 �s 62 �s 256 130

List bucket 65 �s 70% 56 - 56 0.280 �s - 0.280 �s 65 �s 197 134
Tree Bucket 45 �s 75% 161 - 162 0.805 �s - 0.810 �s 37 �s 241 152

Uniform Bucket 20 �s 50% 46 - 448 0.230 �s - 2.240 �s 22 �s 237 161

Reed-Solomon Encoder 120 �s > 50% 240 - 245 2.56 �s 105 �s 280 173

I/O-intensive operation, it occurs under server control and is out-of-scope for this work, which focuses on client
side acceleration.

4.2 Profiling Replication

Based on the proiling results in the irst two columns of Table 2, we have initially focused in DeLiBA on the
acceleration of the compute-intensive replication algorithms in our proof-of-concept.
A key aspect of Ceph is the avoidance of a central directory for keeping track of the physical locations of

the replicas of a piece of data. Such a central directory would quickly become a bottleneck when scaling the
distributed storage system to (many) more nodes. Instead, Ceph employs algorithms that enable each client to
locally compute the physical replica storage locations by itself, using just a logical integer ID for the piece of
data (similar to a block number), and a description of the available storage resources in the Ceph cluster, called a
cluster map.
For replication, just like other replication algorithms [7, 24, 36, 43, 66] in distributed storage, Ceph relies on

a pseudo-random data distribution algorithm [28, 29] named CRUSH (Controlled Replication Under Scalable
Hashing) that distributes replicas across block devices. CRUSH deines four diferent kinds of computations to
represent internal nodes in the storage cluster hierarchy: uniform, list, tree and straw2. In addition to the
parameters of the current storage operation, they receive a łmapł of the entire storage cluster describing the
diferent physical storage resources.

Prior proiling reports of the Ceph system [68] determined that approximately 45% of execution time is expended
on the CRUSH mapping function, which mainly performs hashing operations using a non-cryptographic Jenkins
hash function [8]. This heavy use of hashing has become even more intense in more current Ceph versions: Our
proiling of the recent Ceph version Octopus 15.2.16 indicates that the client now spends more than 70% of its
execution time in the CRUSH mapping functions.
We thus heavily focused on the optimized implementation of the hashing operation in the ive kernels Ceph

uses for data replication. E.g., the 32 bit mixer step has been inlined for all kernels. One of the main goals of
proiling was to proile the overall performance at diferent cluster sizes. Each of the four CRUSH kernels is based
on a diferent internal data structure and computes a diferent function for selecting nested storage nodes during
the replica placement on the block devices.
Their CRUSH kernel execution times vary with the coniguration of the storage cluster as shown in Table 2

under SW Execution Time. E.g., when the storage cluster has disks with identical sizes, for instance, 20GiB for
each disk, the uniform kernel execution time was 20�s. When the cluster size frequently grows, the list function
would be used, whose kernel had the execution time of 65�s, as it had to consider the optimal data movement to
the new storage nodes as they were added. For a dynamically changing cluster, with both additions and removal
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of storage capacity, the straw2 algorithm is suitable. It had an execution time of 85�s. In a cluster with a large
number � of storage sets, called buckets in Ceph, the list approach with its run-time complexity of� (�) becomes
too slow. Here, the tree algorithm allows deeply nested cluster hierarchies, which reduces the complexity to
� (log�), and shortens the execution time to 45�s in the sample scenario.

Table 2 also shows another proile measurement, namely Overall contribution to runtime, which lists the
percentage of each kernel’s contribution to the total Ceph application run time. Only kernels that have a high
relative runtime are promising for acceleration. In our work, we looked for kernels contributing at least 50% to
the overall Ceph runtime when choosing acceleration candidates. Both the measurements i.e SW Execution Time

and Overall contribution to runtime are proiled based on a particular cluster size. As can be seen, in terms of their
software execution times, all of the replication kernels are suitable candidates for hardware acceleration. The
column HW Execution w/ network gives the execution time of the kernel computation together with the network
communication. Note that in many cases, the hardware is able to perform both operations together in similar or
shorter times than software requires just for the computation itself.

The kernels realize multiple algorithms to perform diferent data replication strategies in a Ceph cluster. Which
speciic algorithm is used for a given cluster is statically conigured in the Cluster map. Only the kernel providing
that single algorithm will then actually execute for an I/O request. To give an indication of the implementation
complexity for each algorithm, Table 2 also shows the number of source lines of code (SLOC) of the original
software code and our HLS implementation.

4.3 Profiling Erasure Coding (EC)

As a new contribution in DeLiBA2, we now also consider the Erasure Coding (EC) functionality for hardware
acceleration.

EC is implemented in Ceph as a plugin-in using open-source libraries, speciically Jerasure [16, 52, 53] or Intel
Intelligent Storage Acceleration (ISA-L) [33]. The Jerasure library is integrated as the default EC provider in Ceph
and it runs on all processors, unlike ISA-L which is speciically optimized for Intel processors. Jerasure provides
multiple EC algorithms, however, one of the most commonly used ones is Reed-Solomon (RS) [55]. Figure 8 depicts
a common example of a typical RS encoding process. As shown, for a given �� (�,�) code, there exist � data

packets and� parity packets, sometimes also called coding packets. These codes represent a storage system as a
set of linear equations, with the arithmetic of these equations being based on Galois Field arithmetic described
as as �� (2�), where all elements of the system are based on �-bit words. The required arithmetic involves
addition, multiplication and division. Considering the 32-bit and 64-bit machine word boundaries, the values of w
commonly employed are 8,16,32 in Ceph. For encoding, each disk is partitioned into�-bit word strips, with a
collections of � +� strips being called a single stripe. The igure shows � = 5,� = 2, and� = 3 for �� (2�). This
particular example will thus yield 8 disks in the cluster. Similarly, for� = 4 and� = 8, the cluster will have 16
and 256 disks, respectively.
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As we currently focus on client-side acceleration for distributed storage, we only perform EC encoding in
DeLiBA2, as the computed parity data for each write will be sent to the storage nodes together with the payload
data. In contrast, EC decoding will in general only be required on the server-side when reconstructing (repairing)
failed storage media or nodes, and will involve retrieving data (payload and parity) from multiple other nodes to
recompute the missing pieces of data.
When proiling the software-based EC encoding, we examined multiple (�, �) encoder conigurations. E.g.,

Table 2 shows the times for an RS(6, 3) code. In all practically relevant conigurations, the relative software
run-time exceeded our acceleration threshold of 50% of the Ceph client-side total execution time.

5 IMPLEMENTING THE STORAGE ACCELERATORS AND THEIR NETWORK INTEGRATION

Based on these proiling results, we can now proceed to create hardware accelerators for the various replication
and the EC encoding storage functions. In contrast to DeLiBA, we will tightly integrate the storage accelerators
with the networking functionality in DeLiBA2, avoiding the extra overheads caused by more user/kernel context
switches and the need for interacting with a separate NIC. Instead, we rely on a customized version of an
open-source hardware TCP/IP stack [60, 64] for communication. A key challenge here is the layering of the Ceph
Messenger protocol on top of the TCP connection provided by the stack.
For both kinds of storage accelerators, we will irst explain their hardware implementation and then their

integration with the hardware networking layer.

5.1 Target Hardware and SoC Architecture

Figure 3 shows the schematic view of the FPGA architecture in DeLiBA. The target FPGA board is a Xilinx
Alveo U280, which carries an UltraScale+ FPGA. The software on the host communicates with the Alveo U280
FPGA over a PCIe Gen3x8 interface. A DMA engine is provided by the FPGA device for fast memory transfers.
Accelerators for in-network Replication and Erasure Coding are integrated with the hardware TCP/IP network
stack, which itself is organized as two main subsystems.
The stack’s Ethernet subsystem implements both the MAC sublayer and upper parts of the physical layer,

and uses one or more of the FPGA’s GTY high-speed serial transceivers, which implement the lower part of the
physical layer for 10G Ethernet. This subsystem exchanges Ethernet frames with upper-layer components using
two separate 64-bit AXI Stream interfaces for the Rx (receive) and Tx (transmit) directions.

The stack’s memory subsystem manages read and write requests to the TCP send and receive bufers. In order
to integrate the network stack with our replication and EC accelerators using AXI streams, we have used the
communication library that is already part of the original hardware network stack [73].
In its current form, the packet frames for replication and EC workload are deined ahead of compile-time

i.e, there is no complex run-time packet parsing of replication and EC packets required on the FPGA. Both
transmission and receiving can be performed by just reading/writing static ofsets within the packet bufers.

5.2 FPGA-Accelerated In-Network Replication Operation

At the core of our in-network replication accelerator is the CRUSH algorithm [76]. In our earlier work [37], we
have demonstrated that FPGAs can be used to eiciently execute the replication algorithms over two orders of
magnitude faster than software on a fast CPU. In this work, we directly integrate the same replication algorithms
(also shown in Table 2) into an in-network processing pipeline, as depicted in Figure 3. For our Ceph proof-of-
concept I/O accelerator, ive key CRUSH operations were moved from software to hardware execution. The
hardware kernels were implemented using the Xilinx Vitis 2021.2 High-Level Synthesis (HLS) tool [79]. For HLS,
we set a target clock frequency of 300MHz, which is achieved for all of the individual kernels. Table 2 shows the
latency measurements in cycles and seconds for all ive of the replication kernels kernels.
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At the SoC level, including the TCP/IP stack and all other supporting IP blocks, we still reach an �max of
200MHz after place-and-route (see Section 5.4).

Replication Accelerators using HLS. As usual for HLS, the original software code had to be heavily altered
for hardware synthesis. Key areas that had to be modiied were the heavy use of dynamically allocated memory
and variable loop bounds. The original code employed these to support the many degrees of freedom available for
coniguring a Ceph cluster. However, on an FPGA, it is more beneicial in terms of performance and area usage
to statically tune individual kernels for concrete coniguration parameter values, and instead employ separate,
diferently parameterized hardware kernels for diferent cluster conigurations. All replication kernels have been
pipelined and achieve II=1.

In terms of functionality, straw2 allows other buckets to fairly "compete" against each other when determining
replica placement through a process analogous to a łdrawing of strawsž. The original kernel has to compute a 64-
bit natural logarithm using a lookup table. For the pure HLS code version, we initially implemented this approach
as a single-port BRAM using a Vitis RESOURCE directive. However, for certain values of bucket parameters, such
as id and weight, the table-based computation leads to stalls in the pipeline. To guarantee constant latency,
we implemented a second version of straw2 using the ln� IP block from the Vitis loating-point library as an
alternative. In addition to the logarithm computation, the second key operation in the inner loop of the straw2
kernel is the computation of pseudo-random numbers using the Jenkins hash function. Both versions of the
kernel achieve II=1 when pipelined.

For the case when the coniguration of a Ceph cluster is frequently changed, e.g., by adding more disks, the List
bucket algorithm is used, which is based on linked lists of arbitrary weights. The software version of the kernel
begins by computing the parametric hash of the given data. After the hash computation, the kernel performs a
scan of the list, beginning with the irst element holding the most recently added item, and compares its weight to
the sum of all remaining items weights in the map before returning the block disk id. The lists are usually short,
e.g., having a maximum of 64 entries here, which is the same as the bucket size in the map. For our hardware
implementation, this allows us to avoid the indirect (linked) data structure used in software. Instead, we employ
a combination of arrays and FIFOs that allows pipelining with II=1 for the algorithm’s main loop.
Tree Buckets is also used for frequently expanding clusters with more than 64 entries. However, in contrast

to List bucket, the clusters processed here have more deeply nested storage hierarchies. Each node in the tree is
aware of the total weight of its left and right subtrees, as well as a unique identiier that is passed to the hash
function as a parameter through the map. Similar to the uniform kernel, the tree kernel also does not involve
pointers for traversing the tree nodes. Instead, we have implemented its parameters node weights and items as a
combination of array and FIFOs. The software version requires ive function calls in each of its loop iterations,
two for hashing and three for tree management. For the HLS version, all function calls were inlined for better
resource sharing and cross-call optimizations.

As explained in Section 4.1, the uniform kernel performs replicas among (potentially large) groups of identical
storage devices. The underlying computations are a Fisher-Yates shule [19, 40], computing a uniformly random
permutation of weights, which is then applied to the bucket members. The hardware kernel again uses inlining to
combine these operations into a single function, having three nested loops that could all be pipelined to achieve
II=1.

Replication Operation in the Network. The next step is to integrate the ive HLS replication accelerators
with the network stack on the FPGA. For replication, the communication model underlying Ceph assumes ordered
transmission of messages i.e. all sent messages will be delivered in the order they were sent. This is most easily
achieved my operating the hardware network stack in TCP mode. Hence, all replication accelerators are mainly
integrated with the TCP modules of the network stack.
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We begin with a description of the general replication low, shown in Figure 9. Replication is usually performed
into two ways in distributed storage: Either the client directly sends the requests to all replicas (all copies) or
the client sends the request to a single replica (single copy), which then replicates the request to the remaining
replicas. Ceph implements a variation of the latter, called primary-copy replication, where it is the main (primary)
storage node that sends the replicas to other storage nodes (secondary and tertiary, for the 3-replication discussed
here). To this end, as shown in Figure 9 a typical request low in primary-copy replication consists of following
ive steps:

1 The client divides the block (payload) into multiple packets, and sends these packets to the primary node.
2 The primary node receives the packets, which it forwards to the secondary node.
3 The secondary node receives the packets, which it forwards to the tertiary node.
4 The secondary node waits for I/O completion acknowledgment from tertiary node, which is forwarded

with the secondary’s own acknowledgment to the primary node.
5 The primary node waits for the I/O completion acknowledgment for the secondary and tertiary nodes.
6 Once all replicas are updated and report completion in this manner, the primary node sends a single

acknowledgment (ACK) to the client.

Together with so-called placement rules, the replication accelerators discussed above are used in this scheme to
determine which speciic nodes to employ as replicas to for an individual write request.

Initially in Ceph, read requests were just handled at the primary node (shown in Figure 9.c, Case 1), not to the
replicas. However, newer Ceph optimizations [44] perform load balancing to avoid stressing just the primary
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node with reads, and dynamically select other replicas for reading as well (shown in Figure 9.c, Case 2, by reading
from the tertiary replica).

5.3 In-Network Erasure Coding (EC) using FPGA

As shown in Figure 3, the in-network EC accelerator provides erasure encoding. It was developed using the Vitis
2021.2 HLS tool. Similar to the replication accelerators, the HLS target clock frequency for the encoder was
300MHz. Table 2 shows the proiling, HLS and inal hardware latency results of the in-network EC accelerator.
For the complete SoC on the FPGA (see Section 5.4) with 10GbE, we achieve a post-place-and-route �max of
166MHz.

Next, we explain the HLS transformations performed on the software version of the RS encoder, and their
efect on the microarchitecture, integrating the block with the FPGA-based TCP/IP stack.

EC HLS Encoder Accelerator. For maximum compatibility, the EC hardware accelerator has been developed
using HLS based on the Jerasure library, which is also used in the software implementation of Ceph. A key change
required was replacing the dynamic memory allocations used in the software version with statically allocated
arrays for hardware synthesis.
As previously explained in proiling results (Section 4.3), the most compute-intensive operations in the RS

encoding is the Galois Field (�� (2�)) operations. These region operations involve constructing matrices that
perform the compute-intensive multiplication (×) and bit-wise XORing of operands (⊕) for GF addition (or
subtraction).
At the core of our EC accelerator in DeLiBA, we use an 8-bit (255 symbols) ALU (algorithmic logic unit)

block that implements these regional operations and generates the encoded codeword (parity). To allow better
synthesis-time optimization, we make the symbol width a static compile time parameter. This implies that the EC
accelerator cannot dynamically change ield polynomial or symbol width during the operation. Any change would
require modifying the FPGA design and recompiling, with Dynamic Partial Reconiguration being a possible
way to work around this limitation. However, this design decision will not impair our Ceph use-case, as the EC
parameters will generally not change once conigured for a storage cluster.
For the proof-of-concept implementation, the encoder was conigured to support data packets with � ∈

{6, 8, 10, 12} and parity packets with� = 4. These packet values are deined as macros in the library. Larger
numbers of parity packets, i.e.���{8, 12, 16}, are also supported by the encoder, but are only rarely used in actual
Ceph deployments.

Three techniques are often employed to achieve fast GF multiplication operations: First, using pre-calculated
multiplication tables for smaller values of � = 3, i.e. �� (23). Second, logarithm tables or incremental shifters
for larger values such as� = 8 and �� (28). Third, replacing the expensive multiplications with additional XOR
operations. Since the reference Jerasure RS encoder used in our proiling does not apply XOR operations for the
multiplication, we have refrained from XOR optimizations in the HLS accelerator as well.

Of these three methods, we thus employed only the irst two to stay compatible with the Jerasure approach, as
the third option would require completely diferent matrices. Due to their small sizes of just 48 elements, and to
preserve BRAMs, we implemented the encoding matrix as distributed RAMs.
We also employ Pipeline, Memory Partitioning and Loop Unrolling directives to lay out a fully optimized and

pipelined RS encoder. Loop pipelining is mainly used to exploit the intrinsic parallelism between successive loop
iterations inside the GF matrix multiplication. Furthermore, with the pipelined loops, it is beneicial to implement
parallel accesses (data-level parallelism) to the memory inside the nested loops. This is achieved by using a set of
memory partition directives that creates multiple memory banks.

ACM Trans. Reconig. Technol. Syst.



The Open-Source DeLiBA2 Hardware/Sotware Framework for Distributed Storage Accelerators • 19

Client

round trip  
time  

(3 RTT)

Data  
node

4x Parity  
(coding nodes)

authorization

write packet Data Node written
with new RS
parameters

4 Parity
Nodes

updated

ACK

ACK

(a) Life of a write packet where final ACK is sent
from Data node ater updating 4 parity nodes

Client

round trip time  
(2 RTT)

authorization

no read
operations on
parity nodes

4x Parity  
(coding nodes)

Data  
node

read packet

(b) Life of a read packet where stored
data with previously writen RS parameters is read

Reed Solomon (RS) data and parity
parameters

Ethernet
Header

TCP 
Header

RS  
HeaderIP Header Payload

(c) Write request packet for Encoding

Fig. 10. Packet Flow for Erasure Coding, example shown for for k=1 and m= 4

Integration with Network stack. The next step is to integrate the EC accelerator with the hardware network
stack operating in TCP mode. Compared to the replication-based data protection discussed earlier, a diferent
scheme of interaction is used. First, EC-based storage uses static storage locations, thus there is no longer the
need for something like the CRUSH algorithm to determine storage locations based on a dynamically changing
cluster map.
For the EC example of � = 1,� = 4 shown in Figure 10, the client interacts only with a single storage node,

called a data node in this context. When writing (Figure 10.b), the data node also accepts the EC parity packets
(Figure 10.a) from the client, and distributes them in parallel to the parity nodes, sometime also called coding

nodes. Once all the coding nodes have conirmed the successful writing of the parity data, and the data node
has stored the payload data, it conirms the completion of the entire write back to the client by sending an
acknowledgment (ACK).
From the client perspective, reading (Figure 10.c) is performed similarly to the replicated-storage scenario,

where the accessed data node(s) are determined by load balancing mechanisms. The key point is that during
regular operations, the parity data on the coding nodes does not need to be read. It will be accessed by the Ceph
server-side only if data nodes have failed and the data stored there needs to be reconstructed using the parity
data.
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5.4 SoC Integration of Storage Accelerators

The TaPaSCo hardware/software middleware already supports the use of 10G Ethernet communications from
Processing Elements (PEs) such as our storage accelerators. This feature is now used to attach the hardware TCP/IP
stack, which is thus inserted between the PEs and the GTY transceiver used for the physical network connection.
Note that the stack as well as the Ethernet interface would already support 100G Ethernet, as demonstrated in
[25], but in our current work we just use 10G due to the capabilities of our Ceph testbed, as well as to reduce tool
run times, which would lengthen even further for the wider data paths required for 100G operation. However,
the actual system architecture should indeed scale up to 100G operation with the available FPGA capacities. Also,
while the U280 board does support the use of HBM, the Ceph workload is not memory-bound and can easily
use the traditional of-chip DDR4 SDRAM to hold client-side data for the replication and erasure coding kernels
shown in Table 2.

A key aspect of the use of accelerators is the communication overhead required for interacting with the host.
Fortunately, for the Ceph accelerator, the size of the parameters is relatively small. The largest one is the łmapž
of the storage cluster, which even for larger conigurations rarely exceeds 512 kB and thus is very amenable for
a fast DMA transfer to the FPGA. Since the map is static as described in Section 4.2, it is transferred once and
reused for the remaining I/O requests. Likewise, for the EC encoder accelerator, the relatively small sizes of parity
� = 4 and data chunks � ∈ {6, 8, 10, 12} were also quick for DMA to transfer.

The nature of the computations is also amenable to acceleration: All of the diferent kernels discussed above
execute independently. Also, individual I/O requests can be processed independently. This is very suitable for
execution in a task-based model of computation as provided by the TaPaSCo FPGA framework. Interestingly,
with the optimizations performed since our original work [37], the ten accelerator instances used there could be
replaced in DeLiBA2 by single instances each without performance loss. This is similar to replacing the original
multi-threaded software I/O Pools with higher performing single-threaded algorithms (Section 3.2) that no longer
require synchronization.

Hence each FPGA accelerator used for the evaluation is realized as a TaPaSCo composition containing exactly
only one PE. Even though DeLiBA2 has successfully removed the DeLiBA redirection of network communications
to software, the overhead of the NBD kernel-user relay and the user-space libraries remains. Using the software-
side C++ timing library #include <chrono>, we determined the hardware execution time, e.g., for the straw2
kernel, to take around 62�s (see third last column in Table 2). When comparing with the numbers given in [37],
please consider that the hardware execution times reported here now include the network communications until
the time the ACKs from the nodes have been received back at the client.
Compared to the original DeLiBA work, the remaining execution mode switches still almost cancel out the

per-kernel speedups, with just minor speedups achieved by integrating the hardware network stack. However,
since we can now use pipelined execution from the hardware kernels down to the network, even with these
still-high overheads, we do achieve better overall performance gains as shown in Section 6 over the pure software
execution.
To realize the full potential of the approach, though, we will have to move our programming framework

back down into the kernel, while retaining compatibility with the algorithms developed in the łpleasant and
productivež user-space programming environment of our current solution. This is the goal of ongoing future
work (see Section 8).

6 EXPERIMENTAL EVALUATION OF THE CEPH HARDWARE ACCELERATOR

As described above, DeLiBA2 is used to integrate a 16nm Ultrascale Xilinx Alveo U280 FPGA card providing both
storage and network accelerators for the Ceph protocol stack into the Linux block I/O subsystem. The client-side
host uses an AMD EPYC 7443P 24-Core Processor with 128GB of memory, attached by 10Gb/s Ethernet to the
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SW vs HW Latency [µs]
(4 kB) seq-read seq-write rand-read rand-write

SW (replication) 65 (SD:0.782) 95 (SD:0.519) 130 (SD:0.631) 98 (SD:0.914)
HW (replication) 55 (SD:0.511) 75 (SD: 0.437) 85 (SD: 0.535) 82 (SD: 0.535)

SW (EC) 60 (SD:0.981) 88 (SD:0.913) 95 (SD:0.823) 89 (SD:0.752)
HW (EC) 48 (SD:1.118) 70 (SD:0.889) 82 (SD:0.696) 75 (SD:0.487)

SW vs HW Latency [µs]
(128 kB) seq-read seq-write rand-read rand-write

SW (replication) 120 (SD:0.498) 230 (SD:0.839) 190 (SD:0.487) 232 (SD:0.973)
HW (replication) 108 (SD: 0.4803) 212 (SD: 0.500) 172 (SD: 0.623) 220 (SD: 1.003)

SW (EC) 111 (SD:0.871) 218 (SD:0.564) 178 (SD:0.639) 221 (SD:0.788)
HW (EC) 98 (SD: 0.976) 201 (SD: 0.832) 165 (SD: 0.794) 198 (SD: 0.959)

Table 3

I/O reqest latency on Software and DeLiBA2 Hardware. Times are averages measured across four benchmark executions and

are shown with their standard deviations (SD)

Ceph cluster as described in Section 3.3. The FPGA card is attached to the client host by PCIe Gen3 x16 and
uses a system clock (�max) of 166MHz. The setup also includes a 10G Ethernet network conigured to run on the
Celestica Seastone DX010 switch. Furthermore, the client has a kernel version 6.0.9-1, with an operating system
Rocky Linux 8.7 (Green Obsidian). Similar to the earlier software baseline benchmarks, the hardware evaluation
was performed with synthetic (io) workloads for all ive major block I/O request sizes i.e. 4 kB, 8 kB, 64 kB, 128 kB
and 512 kB. All three major measurements i.e. throughput, KIOPS and latency are average measurements of
four multiple runs. Also, as above, we examine the wall clock execution times for the real-world workload of
compiling the Ceph sources on a CephFS volume, this time with DeLiBA2 hardware acceleration enabled on the
client.

The setup passes all compatibility and functional tests for interactions between the Ceph client and server nodes.
The user-space-based programming environment provided by DeLiBA2 considerably simpliied the development
of the proof-of-concept, as a Ceph-based distributed storage system employs far more complex data structures,
administrative computations, and protocols than one, for example, using the far simpler iSCSI (Internet Small
Computer Systems Interface) protocol [47].

Although there is still a considerable scope of acceleration, the successful integration of the FPGA accelerated
storage and network stack in DeLiBA2 has already improved the overall performance over the original DeLiBA.
In our evaluation, we consider both the replication- as well as erasure-coding-based data protection mechanisms,
and examine latency, throughput, and I/O rate (as I/Os per second, IOPS).

Latency. With DeLiBA2, we aimed to leverage the data processing capabilities of the FPGA-based network
accelerators to speed-up latency of major block I/O operations. In a direct comparison for replication-mode 4 kB
operation as shown in Section 6, a major reduction of latency was observed in random-read operation i.e. the
latency is reduced from 130 µs to 85 µs, a reduction by 35%. For EC, DeLiBA2 achieves a latency reduction of 20%
for sequential-reads from 60 µs to 48 µs.

For operations with the large block size of 128 kB in replication mode, sequential-read has the shortest latency
of 108 µs. This is true for EC mode as well, here sequential reads of 128 kB are the fastest, too, taking 98 µs. All of
these times are the average measurements over four benchmark runs, Table 3 also lists the standard deviations
for the captured numbers.
Overall, the FPGA-based network stack in DeLiBA2 has achieved a maximum of 5 µs reduction compared to

our earlier DeLiBA1 work where the main framework had no FPGA-based network accelerators. Even with the
remaining overheads due to still using nbd as a user-kernel space relay, and the additional PCIe round-trips
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Table 4. Throughputs achieved using DeLiBA2 acceleration for łotherž block sizes

Block Size
Request Patterns

seq-read seq-write rand-read rand-write

16 kB (replication) 121MB/s 88MB/s 75MB/s 64MB/s
32 kB (replication) 273MB/s 172MB/s 218MB/s 94MB/s
256 kB (replication) 719MB/s 623MB/s 567MB/s 432MB/s

16 kB (EC) 132MB/s 89MB/s 106MB/s 68MB/s
32 kB (EC) 252MB/s 145MB/s 182MB/s 101MB/s
256 kB (EC) 884MB/s 603MB/s 661MB/s 491MB/s

involved to the FPGA, the latency of using the hardware accelerator is now always better than using the native
non-NBD software stack, as shown in Section 6.
We also investigated the existing bottleneck in the network data path of DeLiBA2 that prevent even higher

improvements of the latency results. Ceph block I/O requests are translated into network operations that are
eventually executed on the OSD server in an often log-structured storage backend. Similar to other log-structured
data structures as used in databases, this backend requires a costly compaction (a.k.a. garbage collection) process
to remove outdated data.

During this garbage collection, the performance of the OSD drops signiicantly, especially for workloads that
include small block I/O requests such as 4 kB, as discussed in Section 6. Moreover, Ceph performs numerous
compare-and-swap (read-modify-write) operations that both read a location and write a new value into it
simultaneously, either with a completely new value, or as some function of the previous value. Each operation
in read-modify-write requires an extra PCIe round-trip communication to read the current value, perform the
modiication, and write the new value back to the speciic location. The time taken for these network interactions
has an impact on the overall latency results shown in Section 6.

Throughput Speedups using Hardware Acceleration. As Figure 11.a and Figure 12.a show, throughputs are
also improved, showing the 4 kB, 8 kB, 64 kB, 128 kB and 512 kB block sizes as examples. For replication-mode

operation, the hardware-accelerated DeLiBA2 solution manages to speed-up the throughput by up to 2.81x for
sequential writes of 4 kB blocks, and by 1.16x for sequential writes of 128 kB blocks. For erasure-coding mode, the
highest throughput gains of 2.42x are also achieved for sequential writes of 4 kB blocks, while the larger 128 kB
blocks at best realize a throughput improvement of 1.24x for random writes. As for the software case, Table 4
condenses the measurements for the łotherž block sizes that would not it into the bar charts. Table 5 shows the
standard deviations for all of these throughput measurements.

I/O Rate Speedups using Hardware Acceleration. The gains are similar for the rate of I/Os per second, shown
in Figure 11.b and Figure 12.b. For replication, the largest gain of 2.8x for 4 kB blocks is achieved for sequential
writes. For the larger 128 kB blocks, the I/O rate will naturally be slower due the longer time required to actually
transfer the larger payload over the network. But still, the hardware accelerated stack manages a gain of 1.5x for
the sequential-write case.

For EC operation, the I/O rate for 4 kB is improved by 2.42x for sequential-writes. Similar to replication mode,
IOPS gains are limited for the larger 128 kB blocks. At best, a factor of 1.5x is achieved, again for sequential writes.
For both throughput and I/O rate, the speedup factors are quite similar.

Overall throughput and IOPS gains for synthetic io workloads. Figure 13a and Figure 13b visualize the overall
throughput speedup graph of each block I/O size against each block I/O request pattern in DeLiBA2. The highest
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Fig. 11. Throughputs and I/O rates for Ceph replication mode with DeLiBA2 hardware
acceleration

speedups were achieved in small block IO sizes i.e. 4 kB and 8 kB. Larger block I/O sizes 64 kB, 128 kB and 512 kB
had smaller speedups, but never slow downs.
Currently DeLiBA2 employs an LRU caching mechanism to enhance seq read/write performance. As we

concentrated on hardware acceleration, we did not attempt to ine-tune these software caching/eviction policies.
However, it is likely that the lower performance, especially for larger block sizes, can be improved by better
optimization of the policies, especially w.r.t. block eviction.

Wall Clock Performance on Real Workload. Using our real workload of compiling Ceph itself on a CephFS
volume, the use of DeLiBA2 hardware acceleration leads to an average wall clock execution time of 110.2 seconds
(min. 108s, max. 117s), again lushing the ilesystem cache between executions. Compilation is a mix of read/write
operations and consists mostly of random accesses, as only the linking step performs larger sequential accesses.
Using our hardware acceleration even for this real mix of compute (GCC) and I/O (Ceph) leads to an average wall
clock speedup of roughly 20%.
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Fig. 12. Throughput and I/O rates for Ceph in erasure-coding mode with DeLiBA2 hardware
acceleration

FPGA Resource Requirements. Table 6 shows the post place-and-route resource utilization of each hardware
kernel listed in Table 2. For comparison [80], the 16nm Ultrascale Alveo U280 card contains an FPGA chip with
1.3 million LUTs and 2.72 million registers. With 2,016 Block RAMs (BRAMs) and 960 UltraRAMs (URAM), it
holds 4.5 MB of on-chip (BRAM) and 30 MB of on-chip URAM. Furthermore, it has 9024 DSP slices. As can be
seen, the complete system allowing the interaction with Ceph distributed storage in both replication as well as
Erasure Code modes requires only very little FPGA area for 10G operation. It is thus highly promising to consider
scaling the system up to 100G operation, as suicient capacity to handle the wider data busses and the additional
storage I/O accelerator instances is available on the chip. This is one of the next goals discussed in Section 8.

7 RELATED WORK AND DISCUSSION

We organize our discussion of related work into two main topics. he irst one takes a look at distributed systems

and encompasses the łSmartNIC-based In-Network Processingž approach we follow with DeLiBA2, especially on
prior work for replication and EC operations. The second one deals with generally speeding up accesses to block
storage, focusing on local (non-distributed) storage.
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Table 5. Standard deviations of all throughputs for DeLiBA2 accelerated fio tests

Block I/O Size
Block I/O Request Patterns

seq-read seq-write rand-read rand-write

4 kB (replication) 0.564 0.685 0.982 0.776
8 kB (replication) 0.823 0.661 0.945 0.823
16 kB (replication) 0.999 0.443 0.865 0.899
32 kB (replication) 0.752 0.812 0.934 0.555
64 kB (replication) 0.499 0.687 0.912 0.367
128 kB (replication) 0.911 0.333 0.589 0.989
256 kB (replication) 0.543 0.794 0.912 0.845
512 kB (replication) 0.888 0.435 0.765 0.686

4 kB (EC) 0.678 0.579 0.871 .812
8 kB (EC) 0.712 0.651 0.912 0.912
16 kB (EC) 0.829 0.688 0.811 0.788
32 kB (EC) 0.814 0.919 0.811 0.601
64 kB (EC) 0.515 0.699 0.888 0.912
128 kB (EC) 0.812 0.715 0.888 0.912
256 kB (EC) 0.699 0.912 0.712 0.666
512 kB (EC) 0.899 0.997 0.881 0.779

Table 6

Total Resource Utilization of DeLiBA2, including the 10G TCP/IP Stack, configured for a specific replication or EC mode

kernel + TCP/IP + CMAC LUTs Block RAM (BRAM) UltraRAM (URAM) DSPs

Straw Bucket 68,467 112 (5.5%) 0 0
Straw2 Bucket 68,544 102 (5.1%) 0 0
List bucket 64,688 90 (4.4%) 0 0
Tree bucket 67,982 98 (5.9%) 0 0
Uniform bucket 69,143 98 (5.9%) 0 0
Reed-Solomon Encoder 70,111 119 (5.9%) 0 0

In-Network Replication and EC Acceleration. To begin with, the work in [18] is most closely related to
DeLiBA2. It shows how storage policies can be oloaded to fully programmable SmartNICs. To this end, they
have considered operations like replication and EC as use cases. However, there are two fundamental diferences
in their work as compared to ours. First, to accelerate the data path they have used remote direct memory
access (RDMA) instead of TCP. Second, their work is more focused on ile system operations instead of block
storage. Apart from it, the replication schemes used in [18] are also diferent from the replication schemes used
in DeLiBA2. Moreover, in their experimental methodology, they have conigured a toolkit to simulate operations
on a 400Gb/s network, as compared to our use of 10Gb/s in DeLiBA2.

In [34] the authors have demonstrated that replication can be removed from the critical path of performance
by moving it to FPGA hardware. As a proof of concept, they have implemented a consensus protocol roughly
equivalent to Paxos, namely Zookeeper’s atomic broadcast at the 10Gb/s network level. However, this work
falls more in the category of server side acceleration as they use key-value store in conjunction with the atomic
broadcast module.

ACM Trans. Reconig. Technol. Syst.



26 • B.Khan, et al.

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB
0
1
2
3

block I/O sizes

sp
ee
d
-u
p
s

seq-read seq-write

rand-read rand-write

(a) throughput speedup using DeLiBA2 for each block I/O size in replication mode

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB
0
1
2
3

block I/O sizes

sp
ee
d
-u
p
s

seq-read seq-write

rand-read rand-write

(b) throughput speedup using DeLiBA2 for each block I/O size in erasure coding mode

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB
0

1

2

3

block I/O sizes

sp
ee
d
-u
p
s seq-read seq-write

rand-read rand-write

(c) IOPS speedup using DeLiBA2 for each block I/O size in replication mode

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB
0

1

2

3

block I/O sizes

sp
ee
d
-u
p
s seq-read seq-write

rand-read

(d) IOPS speedup using DeLiBA2 for each block I/O size in erasure coding mode

Fig. 13. DeLiBA2 framework throughput and IOPS speedups for synthetic fio workloads on Alveo U280 FPGA

Furthermore, TriEC [61] and INEC [62] propose a new ECNIC oload strategies that overcomemany limitations
of current-generation NIC-oloaded schemes for EC. However, in contrast to our current client-side focus, both
again fall in the server-side acceleration category, accelerating a memcached-based key-value store.

NetEC [54] is a relatively current work in the area of EC acceleration. But they have used an ASIC to accelerate
the EC decoder, as compared to our FPGA-accelerated encoder proposed in DeLiBA2.
The work in [41] is the only work that has conducted a detailed study on the replication and EC operations

in Ceph storage from a complete system perspective, similar to our own scope. Although it provides useful
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measurements, this work does not present any new framework to actually accelerate the slow operations in
Ceph.
Local SSD acceleration. As a good introduction to the ield, the work in [20] has performed an in-depth

evaluation of all existing NBD frameworks and ofers a good baseline for software-only benchmark. However,
their scenario is far simpler than ours: They just use NBD to communicate with local drives via SCSI. Neither
hardware acceleration, nor network communication, nor distributed storage protocols play a role in their work.
The authors in [69] do include an FPGA-based framework to achieve 5x higher IOPS and up to 71% lower

latency. They follow an approach similar to SPDK [65] in that they combine a user-space NVMe stack with an
NVMe target implemented in the FPGA. That NVMe target then forwards the requests to an NVMe SSD directly
attached to the FPGA. The FPGA can then be used to perform optimized scheduling/re-queuing of the operations
received from the user-space stack before handing them of to the actual storage device. Note that by necessity,
the acceleration factors for the distributed storage scenario in our work will always be smaller than those possible
for accelerating local storage accesses, as we will always incur the overhead of network transmissions, which can
only rarely be reduced (e.g., by possibly moving from TCP/IP to QUIC, but which is out-of-scope for our work).

The approach in [81] goes even further than [69] in removing layers from the I/O stack. Here, for the purpose
of high-speed data recording, the host and any software is avoided completely. Instead, an FPGA is used to receive
multiple data streams arriving via high-speed optical ports, and then to realize an NVMe initiator in soft-logic
that can write out that data with minimum latency to NVMe drives directly attached to the FPGA. However,
the approach in [81] is NVMe speciic, while DeLiBA2 interacts with the generic block-mq layer. [69] does not
include network optimizations, it just focuses on local SSD operation.
The idea of using multiple queues, which also lies at the heart of the Linux block-mq I/O subsystem, to

communicate with FPGAs has been examined by other authors as well. Both [58] and [57] employ it to interact
with general-purpose FPGA accelerators, but not for realizing the complete storage solution we aim for.

As Ceph is a widely used storage system for HPC scenarios, there has also been commercial interest in providing
accelerated solutions. A recent one is an ofering by Xilinx [78], but the publicly available information does not
show any benchmarks.
Also, all of these prior research eforts focused right away on end-to-end performance, often with excellent

results. But the main design goal of DeLiBA and DeLiBA2 was diferent: Our system was designed from the start
as an enabler for basic research into the acceleration of more complex storage protocols, such as Ceph, than the
computationally simpler SCSI and NVMe-based systems examined in prior work. The fact that DeLiBA, even it
its initial version DeLiBA1, is already able to achieve performance gains, further improved by DeLiBA2, though,
is a pleasant side-efect of the originally intended purpose.

8 CONCLUSION AND OUTLOOK

This work presents the most reined version of the DeLiBA framework for accelerating Linux block I/O operations
by moving them to FPGA-based hardware. In its initial version DeLiBA1 [37], the framework was used to move
the compute-intensive algorithms for replication-based storage in the Ceph system to FPGA execution. The
new version DeLiBA2 presented here also allows erasure-coding based storage, and in addition addresses the
distributed nature of a Ceph-based storage system by including communications acceleration on the FPGA. The
latter encompasses both the Ceph-speciic Messenger protocol, as well as the underlying TCP/IP layers and
Ethernet interface.

By avoiding the overhead of extra context and HW/SW execution switches for the networking functions, we
have improved both the throughputs as well as the latencies over the original DeLiBA1 implementation. But we
continue to be able to provide a comfortable development environment for more complex storage algorithms by
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łliftingž their processing from the far more restrictive kernel programming level up into user space, where all of
the techniques and tools familiar to software developers are fully applicable.

However, when aiming for maximum performance, this lifting from kernel to user-space becomes too costly. It
is currently implemented by employing the Network Block Device (NBD) feature of the Linux kernel, which
easily provides the required functionality, but causes slow context switches between the Linux kernel and the
user-space processing for each of the I/O requests.

The next step is thus to completely avoid these unnecessary user-kernel mode switches we still incur, namely
by removing the NBD-based indirection, and instead entirely operating at the kernel-level block I/O interface. For
Ceph, this would be achieved by attaching the hardware-based processing (storage and network) to the existing
Rados block device (RBD) module. In this manner, both user-kernel space transitions, as well as PCIe transfers
between the host and the FPGA board can be reduced even further.
Since we want to preserve the capability of DeLiBA to act as a general-purpose development framework for

adding hardware acceleration to the block I/O stack, we will aim to maintain compatibility between the DeLiBA2
user-space development environment, and the in-kernel execution of a future łDeLiBA3ž. This would enable
storage experts to perform productive development in user-space as long as possible, and then descend into the
kernel space with minimal extra efort when tuning for maximum performance.

Once the last of the unnecessary context and execution mode switches has been removed, further areas to be
investigated is scaling-up the system to 100G operation and to also consider accelerating server-side operations.

DeLiBA is open source and available online at https://github.com/esa-tu-darmstadt/deliba
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