Using C, C++ and C# For A Wider Consensus in
High-Level Synthesis Compilers

Babar Khan

TU Darmstadt, Computer Science, Germany

Abstract—High-level synthesis (HLS) is an automated design
process that brings a significant reduction in design cycles by
pushing the design to higher levels of abstraction. What is more,
HLS has received increasing attention because of its ability to
handle machine learning matrices and iterative design efforts.
Specifically, the low precision arithmetic and number systems
have become the standard for performing deep learning inference.
Recently it was shown that the data type-agnostic (DTA) program-
ming methodology based on HLS empowers Xilinx Vivado HLS
compiler to synthesize hardware architectures for a plethora of
data types without modifications of a C++ source code. Especially,
the very same code can be used for real-valued and complex-
valued data paths by utilizing the C++ class and template library.
This paper presents a novel implementation of the aforementioned
methodology in additional languages namely C and C# to evaluate
the improved performance for three different arithmetic formats
namely floating-point, fixed-point and arbitrary-precision integer.

I. DATA TYPE AGNOSTICISM METHODOLOGY

FPGAs are configurable integrated circuits that provide a
good trade-off in terms of performance, power consumption,
and flexibility with respect to other architectures. However,
it is a challenging task to program FPGAs. The processes to
design hardware at a high-level of abstraction can enhance
the productivity of FPGA designers. High-level Synthesis
(HLS) being an automated design process takes as input an
algorithmic description at a higher-level of abstraction and
generates as output a hardware implementation of a micro-
architecture (e.g. in VHDL/Verilog) known as register transfer
level (RTL). HLS is gaining more popularity because of its
ability to handle machine learning matrices and iterative design
efforts. Due to the high computational requirement for machine
learning matrices and iterations, it is important for modern
hardware to support a wide variety of data types.

Knoop et al. [1], [2] has proposed to extend the capabilities of
design space exploration of HLS through a data type-agnostic
programming methodology using Xilinx Vivado HLS. The
results showed that the rapid digital architecture design flow
based on HLS is a superior alternative to the traditional RTL
design methodology.

This work shows an extension of data type-agnostic program-
ming methodology to mainstream HLS compilers. To the best
of our knowledge no prior work exists that benchmark custom
arithematic in mainstream HLS compilers. Fig.1 illustrates the
concept of data type-agnostic programming methodology. It
shows the data types are conceptualized as variants and they
are pushed through the standard HLS design flow. A test bench
is a vital part of the flow to check the correctness of the design.
Finally, the evaluated output is plotted in terms of resource
utilization and accuracy.

Data Type Agnosticism in
the Design

Parameterization

Code Code Code [] ® []
Variant 1| |Variant 2 Variant 3

l

High-Level
Synthesis

Test Bench

Resource 1

; b4 Variants
] P P
L >
e X

-

=

Performance

Figure 1: The data type-agnostic programming methodology
integration in a design flow

Table I: Benchmarked High-Level Synthesis (HLS) Compilers

Compiler | Compil Input Output
Vitis LLVM SysC/C/C++ VHDL/Verilog
Catapult GCC SysC/C/C++ VHDL/Verilog
Intel LLVM C/C++/OpenCL Verilog
LegUp LLVM C Verilog
Kiwi .NET C# Verilog
Bambu GCC C Verilog

As shown in Figure 2, adhering to the proposed method-
ology, the algorithmic description of the source code was
kept generic and parametrisable in terms of data types. In
C++ based HLS tools this was achieved with the help of
C++ Templates and keyword typedef. For C based HLS tools
this was achieved using the void pointer (void*) and keyword
typedef. In a C# based HLS tool, C# generics were used. As
FPGA s are ultimate pipeline processors, the loop optimizations
were one of the major optimizations applied. Logic, DSP
and memory usage were taken into considerations for the
resource utilization. Hence the four main metrics to evaluate
the resource utilization were LUTSs/ALUTs, DSPs, BRAMs
and FlipFlops. The target device used for LegUp and Intel
HLS compiler was Altera Stratix V. Similarly, the target device

C++

Templates C Void Pointer

C# generics

Figure 2: Data Type Agnosticism implementation in C based
languages

used for Vivado, Kiwi, Catapult and Bambu was Xilinx Virtex-
7. Both Stratix V and Virtex-7 are SRAM-based island-style
28 nm state-of-the-art high-performance FPGAs containing
many heterogeneous computational elements. The DSP units
in Altera and Xilinx devices are almost equal.

A. Evaluation

For Vivado, Catapult and Intel HLS the two main data

types used were fixed-point and floating-point. Considering
a scenario where the range of floating-point input is from
0 to 1 and the desired precision is 3 decimal digits. Then
the most feasible approach would be to have input arrays
of a hardware kernel that can have a fixed-point data type
with 11-bit variable input (1-bit integer value with 10 decimal
places). Further, for the difference (subtraction) operation a
signed fixed-point data type with 12-bit variable (2-bit integer
with 10 decimal places) can be considered. The multiplication
operation can have up to 20 decimal places of significance.
Thus, an unsigned 21-bit variable (1-bit integer value with
20 decimal places) fixed-point data type can be used for the
multiplication result. Regarding the accumulation operation,
there will be the requirement of extra integer bits. For the
vector size N = 100, the accumulator should be an unsigned
a 28-bit variable (8-bit integer with 20 decimal places).
For Kiwi, LegUp and Bambu the data types considered were
a 32-bit integer and arbitrary-precise integer of 14-bits. Trim-
ming constant or unwanted bits can decrease the width of
the computed values, enabling the HLS tool to use reduced
width functional units. If the input arrays. are full 32-bit
signed values then using an arbitrary precision integer with
32-bits will not be more efficient than using straight away a
native integer of 32 bits. Considering a scenario where the
input arrays have a range of values between 0 and 1 then
using an arbitrary precision integer of 7 bits for input arrays
is sufficient. For the difference and multiplication operations,
arbitrary precise of 8-bits and 14-bits respectively can be used.
Similarly, for the accumulation and output array, 14-bits is
sufficient.

II. RESULTS SUMMARY

Through data type-agnostic programming methodology not
only the designer can minimize the hardware cost while
achieving the numerical accuracy, occasionally the designer
can also relax the conventional requirements of precise equiv-
alence. This falls in line with a computation technique called
approximate computing. At the custom hardware level, there
are many error-tolerant applications that have the inherent

Table II: First Design Architecture Results for Vitis,Catapult
and Intel

Standard-Optimized Resource and Performance

Tool Data Type LUT DSP | BRAM FF Freq Cyc
Vivado ap_fixed<28,8> 87 1 0 82 251 609
Catapult ac_fixed<28,8> 137 1 0 68 248 801
Intel ac_fixed<28,8> 156 1 0 107 248 768
Tool Data Type LUT | DSP | BRAM FF Freq Cyc
Vivado float 892 5 0 644 246 2001
Catapult | float 732 4 0 487 242 1456
Intel float 817 4 0 621 233 2332

Table III: Design Architecture Results for Kiwi, LegUp and
Bambu

Standard-Optimized Resource and Performance
Tool Data Type LUT DSP BRAM FF Freq Cyc

Kiwi int 14 68 1 0 103 279 502
LegUp int 14 73 1 0 112 266 569
Bambu | int 14 129 2 0 186 233 1017
Tool Data Type LUT DSP BRAM FF Freq Cyc
Kiwi int 32 124 3 1 165 233 906
LegUp int 32 202 4 1 258 231 1002
Bambu | int 32 180 2 1 209 208 1112
Post-Optimized Resource and Performance

Tool Data Type LUT DSP BRAM FF Freq Cyce
Kiwi int 14 101 1 1 198 291 106
LegUp int 14 194 1 1 209 277 378
Bambu - - - - - - -

Tool Data Type LUT DSP BRAM FF Freq Cyc
Kiwi int 32 156 6 1 301 241 129
LegUp int 32 236 4 1 278 238 456
Bambu - - - - - - -

resilience to generate tolerable outputs despite some of its
computations are executed imprecisely in the hardware.

REFERENCES

[11 B. Knoop, K. Vinod, S. Schmale, D. Peters-Drolshagen, and S. Paul,
“Fast digital design space exploration with high-level synthesis: A
case study with approximate conjugate gradient pursuit,” in 2016 50th
Asilomar Conference on Signals, Systems and Computers, Nov 2016, pp.
412-416.

[2] B. Knoop, J. Rust, S. Schmale, D. Peters-Drolshagen, and S. Paul, “Rapid
digital architecture design of orthogonal matching pursuit,” in EUSIPCO.
IEEE, 2016, pp. 1857-1861.

