
2/14/23, 3:17 AM Kiwi Scientific Acceleration: FPGA HLS of Custom Arithmetic including Gustafson and Yonemoto's Posit Unum

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/ 1/7

Kiwi Scientific Acceleration: C# high-level synthesis for FPGA execution.
FPGA HLS of Custom Arithmetic including Gustafson and Yonemoto's Posit Unum

Kiwi Scientific Acceleration: FPGA HLS of Custom
Arithmetic including Gustafson and Yonemoto's
Posit Unum
DJ Greaves (and Babar Khan).

Introduction

An appealing aspect of FPGA computation is the ability to use custom bit-widths
and custom arithmetic systems. This is well known to save execution energy.

The recent increased use of machine learning algorithms has stimulated interest in
custom arithmetic, both for training and deployment: the standard use of single-
precision IEEE floating point is generally rekoned to be overkill for nearly all
machine learning algorithms. Other application spaces where custom arithmetic is
very useful include low-density parity checking and general Bayesian inference.

Using an HLS toolchain, it should be easy to replace one arithmetic system with
another or reparameterise a given arithmetic system using alternative field widths.
The basic approach will be to overload all of the basic arithmetic operators and
allow the HLS compiler to instantiate the appropriate ALUs and custom-width data
paths. In this little study we use the KiwiC HLS compiler that accepts dotnet files
generated from CSharp.

(In the past I have considered implementing custom fixed and floating point
precisions using Kiwi. I am not sure whether any KiwiC extensions are really
needed. The operator overload facilties of C# should make all this fairly easy and
just work. Generic parametes should allow either a built-in type or a user-defined
type to be passed in, provided all the necessary operator overloads exist. Kiwi does
not support top-level components with generic type parameters. Instead you have
to write a wrapper around any top component that has type generics that fills in
concrete values for those parameters.)

And it would be really great to get some evaluation of the floating point within Kiwi
- hopefully we can find a sweet spot in terms of custom precision that suits a
popular application. The most obvious application, of course, is convolutional neural
networks, where having 24 bit mantissas is now widely accepted as being wasteful.
Other examples that spring to mind are solving low-density parity codes, other
Viterbi/Baysean estimators that use probability and perhaps the Spinnaker Neuon
simulator from Manchester. ...

Custom arithmetic formats of interest include

cac_pureint straightforward integer (or float etc, as natively supported).

2/14/23, 3:17 AM Kiwi Scientific Acceleration: FPGA HLS of Custom Arithmetic including Gustafson and Yonemoto's Posit Unum

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/ 2/7

cac_signmag sign+magnitude integer.

cac_fixed fixed field-width precision integer (using Kiwi.HwWidth() attribute where
necessary).

cac_rational fixed point rational.

cac_fp floating point with smaller than usual exponent and mantissa precisions.

cac_posit Gustafson's posit unum system PDF.

So-called Algorithmic Datatypes

There is nothing new to doing arithmetic with custom datatypes in high-level
languages. SystemC is a good example of this, where all of the arithmetic operators
are overloaded for the custom types. Another example is Mentor's "Algorithmic C
(AC) Datatypes Software version (3.7)". In addition, you my find the same ac-
datatype code on GitHub. When such a library is used under HLS, we gain a means
to extend the arithmetic facilities of the HLS system while preserving perfectly
readable source code.

Fortunately C# has a struct datatype that assigns by value rather than be reference
(as for a class). Therefore, no nasty overloading of the assignment operator is
needed. Also C# allows definition of implicit functions that are then interposed by
the compiler in many places that would otherwise be a type error. However, there
are some important differences between C++ and C# that affected this project:

C# does not accept numeric values in generic positions (unlike C++ templates).

C# does not allow overload selection based on generic types without the
'dynamic' keyword being inserted in the source code all over the place.

..
Finally, KiwiC supports the Kiwi.HwWidth attribute that allows specification of
custom-width signed and unsigned integer registers when compiled to hardware
and which reports compile-time warnings if wrapping behaviour would be different
between the hardware execution and running for development under mono.

Ways of Reparameterising
Our aim is to have identical behaviour in terms of rounding and overflow on
custom-precision numebers when running the code as a .NET program under mono
or on FPGA via Kiwi. A non-goal is high performance when running under mono:
that is for development only.

Since, in C#, we cannot pass numeric values into parameter generics (as we can in
C++), we must use a slightly different approach to setting the arithmetic
parameters compared with SystemC and Mentor's ac-datatypes.

The methods of parameterisation we might consider are:

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/posits-gustafson-137-897-1-PB.pdf
https://www.mentor.com/hls-lp/downloads/ac-datatypes
https://github.com/andres-takach/ac_types

2/14/23, 3:17 AM Kiwi Scientific Acceleration: FPGA HLS of Custom Arithmetic including Gustafson and Yonemoto's Posit Unum

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/ 3/7

Putting each variant of arithmetic in a different .dll file and linking the client C#
files against a selected one. The problem of having multiple different files all with
the same name is overcome using the C# import as construct, whereby the client
code is written using a lightweight type token throughout and the binding to an
actual datatype is indirected through the as clause.

Instantiating each type with a C# generic parameter that sets its type.

Creating a heap object that describes the arithmetic's parameters (field widths,
encoding etc.) and passing this to the constructor of our primary input data objects
and/or hard-coded constant objects and then forwarding it through each overloaded
operator.

... another ?

Compiling a large number of forms to RTL and using a Kiwi.RtlParameter to
select between forms at module instantiation time in its wrapping RTL
substrate/shell.

Posit Unums

The posit unum system is a variation on floating point. It has a number of
distinctive features:

The overall precision/range combination is described with two numbers: the total
bit width and the number of bits in the fixed-width exponent field. These must be
conveyed out-of-band.

The exponent and mantissa compete with each other for space inside a fixed-width
word: Large or small in magnitude numbers have less mantissa precision. (By
'exponent' in the previous sentence, I mean the combination of the posit's variable-
length regime field and the fixed-width part of the exponent.)

There are some 'standard' recommendations for the total and exponent fields in the
cited paper. These span from small to large word sizes, as does the IEEE-754 set of

2/14/23, 3:17 AM Kiwi Scientific Acceleration: FPGA HLS of Custom Arithmetic including Gustafson and Yonemoto's Posit Unum

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/ 4/7

standard encodings. But an HLS implementation could use virtually any
combination, including an exponent field of zero. The only restriction is that the
sign field always needs one bit and the regime needs at least two bits.

Beating Floating Point at its Own Game: Posit Arithmetic. John L. Gustafson and
Isaac Yonemoto. PDF.

First stab C# implementation, ready for testing and performance under HLS
analysis: cac_posit.cs

The only expected issue for HLS implementation, especially for small word sizes, is
the much greater control-flow variation compared with more straightforward
arithmetic systems, such as fixed point, or compared with hard-coded systems,
such as IEEE floating point. Regarding the latter, typically the complexity of the
floating-point procedures is tucked away inside structurally-instantiated ALU
components that may have been hand optimised. Whereas feeding the above posit
code straight into a monolithic HLS run, that typically flattens out all subroutine
calling by in-lining method bodies, will perhaps give an order of magnitude more
control flow complexity than normally encountered.

Fortunately, the Kiwi system supports incremental compilation, so ...

HLS Experiments
REST OF PAGE UNDER CONSTRUCTION.

Refelection API approach.

In this section we report on a minor digression that we did not fully explore ... yet
...

Although an excellent language in most respects, C# does not allow operator
overloading to be based on a generic parameter. For instance, if we have a choice
of algorithmic datatype and pass one in as argument T to the following fragment,
we get a compile-time error.

class tinyTest
{
 T code1(T a, T b) { return a+b; }
}

The error arises even when the type provides an overload for the addition operator,
which it should as a usable arithmetic system.
C# allows constraints on generic type formals using the 'T where ...' construct. But
this is not suffcient: providing a constraint on the type formal that it provides an
operator overload for addition does not help. The C# compiler still needs to
statically know which method to dispatch (or at least from which OO heirarchy of
overloads). It cannot know this in general, under incremental compilation, since the
implementation may not be provided until link editing time (which for .NET is
normally the same as VM load time).

A solution in the C# language is available however. We can insert the word
'dynamic' at all such overload sites. The code then looks like this:

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/posits-gustafson-137-897-1-PB.pdf
https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/cac_posit.txt

2/14/23, 3:17 AM Kiwi Scientific Acceleration: FPGA HLS of Custom Arithmetic including Gustafson and Yonemoto's Posit Unum

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/ 5/7

class tinyTest
{
 T code1(T a, T b) { return (T)((dynamic)a+(dynamic)b; }
}

The resulting code is ugly and also it has potentially poor performance under
software execution owing to the dynamic lookup used at run-time, although the
lookup is cached in additional, hidden static variables generated by the C# compiler
(mcs anyway). However, under HLS, the HLS compiler can reverse-engineer all of
the dynamic lookups assuming that the necessary information is present in the
group of .dll files that are read by that HLS run. For instance, KiwiC will not accept
top-level generic parameters in any compilation run, and hence all of the
information will indeed be present when generating a hardware equivalent. The
information is all constant at KiwiC exceution time, and so does not present any run
time overhead on the FPGA.

We implemented many of the necessary reflection API mechanisms inside KiwiC,
but did not finish off the study yet ... we switched to an alternative coding style
instead ... The alternative is not to combine generics and operator overloading, but
I think that would defeat your object.

Also, KiwiC must be extended to support much more of the .NET reflection API
when 'dynamic' is used. ...

Another way ...via heap fields

Kiwi is now reading in the main parameters of such units from IP-XACT
descriptions, so it is no longer necessary to alter KiwiC when the ALU blocks are
changed. But I have not emphasised this work owing to even single-precision
tending to be overkill for most FPGA-accelerated applications.

So instead of passing the paramaterisation of bit widths in the generic parameter
slot we take a different approach.

As in https://www.mentor.com/hls-lp/downloads/ac-datatypes (or
https://github.com/andres-takach/ac_types) we define our own structures for
representing our parameterised numeric type and use object-oriented overloading
of all standard arithmetic operators to make using these values relatively painless
from a coding point of view. We also implement setters and getters.

Then we must use a lightly more elaborate syntax for declaring our registers (as is
the case for ac-datatypes), such as

 static cac_fixed v0 = new cac_fixed(10/*bits of precision*/, 4/*Initial value*/);

but the body of our programs that use these variables are written without
complication owing to overload. Moreover, to change the precision, or indeed the
whole system of number representation, only minor edits are needed. These being:
1. To change the precision, change a constant value in the application source code
that is used in each register's constructor call (as opposed to the explict 10 in the
example above). 2. To change the number representation, e.g. from custom fixed
to custom floating point, use a different .dll file in both the mono and KiwiC runs.
If you object to changing the definition of existing code or .dll files when switching
to a new basic precision, you might like to indirect through something like a

2/14/23, 3:17 AM Kiwi Scientific Acceleration: FPGA HLS of Custom Arithmetic including Gustafson and Yonemoto's Posit Unum

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/ 6/7

typedef. A null extension of a class operates like a typedef in C#, but inheritance is
not allowed for structs as we need (I think) to make the custom datatype a struct
so that assignment has the behaviour we expect (essentially a deep copy rather
than an object handle copy, which would be fatal). There are probably various C#
tricks for doing this more neatly that I am not aware of. But one way that is neat
and works is for the custom datatype to accept a struct (or class) as the precision
operand to its constructor that sets not only the precision but also the basic
representation via a second field that is an enumeration and where the method
bodies of the overloads dispatch to the appropriate implementation based on this
enumeration. Hence, to extend the range of representations supported and to
switch between them we do not need to upset the previous meaning or behaviour
of any identifier.

However, if the aim is to set the width of registers in a hardware design, it does not
matter if the computation on these parameters is done inside the C# compiler or
inside the Kiwi compiler: either way it will not take place at hardware run time.

So converting the ac_fixed to a C# equivalent has to be done in a way that passes
the numbers around in C# data structures that are all 'elaborated away' by the Kiwi
compiler.

There' an example coding style that enables this to be done through the generics in
this article https://www.codeproject.com/Articles/33617/Arithmetic-in-Generic-
Classes-in-C which might be worth exploring, but basically you could just as easily
put the parameters into a base heap object that is pointed at by all concrete
expression nodes formed in the course of a computation and rely on the HLS
synthesiser detecting that the values in this base object are compile-time constants
for the HLS synthesis and promulgating their value to all elaboration steps so they
do not end up being represented at hardware run time (except in terms of their
main use in setting register widths, just like Verilog's parameter values).

Q. Can I pass constant expressions into my attributes, such as
\verb+Kiwi.HwWidth(), to make highly-parameterisable code? When do the
constant expressions get evaluated? Can values set via \verb+Kiwi.RtlParameter()+
be used within hardware width expressions attributes? Posit Unum Overheads

Kiwi is now reading in the main parameters of such units from IP-XACT
descriptions, so it is no longer necessary to alter KiwiC when the ALU blocks are
changed. But I have not emphasised this work owing to even single-precision
tending to be overkill for most FPGA-accelerated applications.

Conclusions
TBC ...

References
Beating Floating Point at its Own Game: Posit Arithmetic. John L. Gustafson and
Isaac Yonemoto. PDF.

June-Sept 2017. UP.

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/posits-gustafson-137-897-1-PB.pdf
http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/timestable-demo/kiwic-simple-demos.html

2/14/23, 3:17 AM Kiwi Scientific Acceleration: FPGA HLS of Custom Arithmetic including Gustafson and Yonemoto's Posit Unum

https://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-posit-unum-and-custom-arithmetics/ 7/7

